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A 4-dimensional system of nonlinear difference equations tracking allele frequencies and population
sizes for a two-patch metapopulation model is studied. This system describes intergenerational changes
brought about by density-dependent selection within patches and moderated by the effects of migration
between patches. To determine conditions which result in similar behaviour at the level of local
populations, we introduce the concept of symmetric equilibrium and relate it to properties of allelic and
genotypic fitness. We present examples of metapopulation stability, instability and bistability, as well as
an example showing that differentially greater migration into a stable patch results in metapopulation
stability. Finally, we illustrate a Naimark-Sacker bifurcation giving a globally asymptotically stable
invariant curve for the 4-dimensional model.
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1. Introduction

There is much current interest in the dynamical behaviour of populations organized as

metapopulations. From the viewpoint of population biology, a metapopulation is a collection of

local populations that act with at least partial independence. Considered broadly, the

metapopulation concept encompasses population extinction and colonization events as well as

interaction among established populations whose persistence over long time intervals is not an

issue. The model and analysis described in this paper are developed to study behaviour in

metapopulations of the latter type. For this case, populations are not considered as separate units

functioning in isolation, but are viewed as interacting entities, connected through migration.

Much of the analysis of metapopulation dynamics has concentrated on ecological aspects with

demographic behaviour being a major focus. However, it has become clear that metapopulation

structure can also influence patterns of variation among and within populations at the gene and

genotypic level and is involved in shaping genetic population dynamics (Hanski and Gilpin [1]).
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For this reason, the need to study models that incorporate both genetic and ecological

components has been recognized (Hastings and Harrison [2]) as a means of obtaining a more

complete understanding of evolutionary processes involved in producing population structure in

nature.

Here we introduce a 4-dimensional system of difference equations that describe gene

frequency and population size intergenerational transitions for a two-patch metapopulation

model. We present some initial results from mathematical analysis of this system. In this

treatment, the local populations are connected through interpopulation migration and local

density-dependent selection. Hanski [3] pointed out that the two population model can be

useful for studying the effects of migration on local population dynamics; it offers the

advantage of mathematical tractability. Our purpose with mathematical analysis of our more

complex system of equations is to study the interacting effects of migration and density-

dependent selection on local allele frequency and population size dynamics.

In sections 2 and 3 we describe the system of equations for this model, and we discuss the

state space for this system and then develop equilibrium equations. To determine

circumstances where the local populations have similar asymptotic behaviours, we introduce

the notion of symmetric equilibrium in section 4. With this type of equilibrium both local

populations have the same allele frequencies and proportional population sizes. Theorems 1

and 2 relate the concept of symmetric equilibrium to properties of allelic and genotypic

fitness of the local populations. A family of examples is presented where genotypes of one

local population exhibit heterozygote superiority but genotypes of the other local population

exhibit heterozygote inferiority, and the 4-dimensional metapopulation exhibits stability,

instability or bistability. Also, we show by example that differentially greater migration into a

stable patch tends to stabilize the metapopulation. In section 5 we discuss a Naimark-Sacker

bifurcation [4, 5], which results in a globally asymptotically stable invariant curve that

cannot occur in the density-dependent selection model without migration [6, 7].

2. Model equations

First, we introduce a model from ecological genetics that accounts for the effects of selection

on the allele frequency and the population density of a single population (see Roughgarden

[6] or Selgrade and Namkoong [7]). Let x denote population size or density of a diploid

population with two alleles, A and a, at an autosomal locus and let p denote the frequency of

the A allele prior to selection, where 0 # p # 1: Hence, the population consists of

individuals having one of three genotypes, AA, Aa or aa. The genotypes have nonnegative

per capita growth rate functions ( fitnesses), fAA( p, x), fAa( p, x) and faa( p, x), which reflect the

effects of natural selection and which are decreasing functions of x because of crowding.

Allele fitnesses fA and fa are defined by f Aðp; xÞ ; pf AAðp; xÞ þ ð1 2 pÞ f Aaðp; xÞ and

f aðp; xÞ ; pf Aaðp; xÞ þ ð1 2 pÞ f aaðp; xÞ: Accordingly, the population mean fitness f is given

by f ðp; xÞ ; pf Aðp; xÞ þ ð1 2 pÞ f aðp; xÞ: Assuming random mating, the following system of

difference equations describes the changes in allele frequency and population size that take

place from one generation to the next:

p0 ¼
px f Aðp; xÞ

x f ðp; xÞ
; x0 ¼ xf ðp; xÞ: ð2:1Þ

Here p0 and x0 denote allele frequency and population size in the next generation.
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The simplest generalization of this model, that includes the effects of migration and

selection on allele frequency is the one-island or continent-island model in which a single

population receives immigrants from a large nearby population. Even if the migrating

population is of constant allele frequency, Roberds and Selgrade [8, 9] show that

interesting dynamics can occur, including period-doubling and Naimark-Sacker

bifurcations [4, 5]. To allow migration where the migrating population has varying

allele frequency, we consider a two-island metapopulation where pi and xi denote allele

frequency and population size on the i-th island or patch, for i ¼ 1; 2: In each generation

following selection, individuals emigrate at a constant rate mi from the i-th patch to the

other patch. After migration, random mating is assumed to take place within each patch,

yielding Hardy-Weinberg proportions in the population of zygotes that form the next

generation. For i; j ¼ A; a; we let f ijðp1; x1Þ denote the genotype fitnesses of the local

population in the first patch and gijðp2; x2Þ denote the genotype fitnesses of the local

population in the second patch. The fitnesses fA, fa, f, gA, ga and g are defined accordingly.

With these assumptions, the following 4-dimensional system describes the allele

frequencies and population sizes in the next generation:

p01 ¼
ð1 2 m1Þp1x1 f A þ m2p2x2gA

ð1 2 m1Þx1 f þ m2x2g
; x01 ¼ ð1 2 m1Þx1 f þ m2x2g;

p02 ¼
ð1 2 m2Þp2x2gA þ m1p1x1 f A

ð1 2 m2Þx2gþ m1x1 f
; x02 ¼ ð1 2 m2Þx2gþ m1x1 f :

ð2:2Þ

Note that the fixation planes {p1 ¼ 0 ¼ p2} and {p1 ¼ 1 ¼ p2}; where one allele is

absent, are invariant under the map (2.2). However, the planes {p1 ¼ 0; p2 ¼ 1} and

{p1 ¼ 1; p2 ¼ 0} are not invariant. On the fixation planes, the model reduces to a

two-patch metapopulation model without genetic variation.

3. Equilibria

The phase space for our system is the 4-dimensional region in Euclidean space given by

R ; {ðp1; p2; x1; x2Þ : 0 # pi # 1; 0 # xi; i ¼ 1; 2}:

Two boundary planes of R; {p1 ¼ 0 ¼ p2} and {p1 ¼ 1 ¼ p2}; represent allele fixation

and are invariant. When m1 ¼ m2 ¼ 0 the system (2.2) decouples and the 4-dimensional

dynamical behaviour is determined by the behaviour on the ( pi, xi)-planes where equation

(2.1) holds.

From equation (2.2), we see that an equilibrium E in the interior of R must satisfy the

following 4-dimensional system:

x1 ¼ ð1 2 m1Þx1 f þ m2x2g;

x2 ¼ ð1 2 m2Þx2gþ m1x1 f ;

p1x1 ¼ ð1 2 m1Þp1x1 f A þ m2p2x2gA;

p2x2 ¼ ð1 2 m2Þp2x2gA þ m1p1x1 f A:

ð3:1Þ
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By adding the first and second equations in (3.1) and adding the third and fourth equations

we get

x1ð1 2 f Þ þ x2ð1 2 gÞ ¼ 0

p1x1ð1 2 f AÞ þ p2x2ð1 2 gAÞ ¼ 0
ð3:2Þ

Hence, at E ¼ ð �p1; �p2; �x1; �x2Þ; the terms 1 2 f ð �p1; �x1Þ and 1 2 gð �p2; �x2Þ must have opposite

signs or both be zero. The analogous statement must hold for the allele fitnesses fA and gA.

If all these terms are zero then in the next section we will see that E has some symmetry

properties.

4. Symmetric equilibria

Habitat differences between patches may result in dissimilar behaviour at the level of the

local populations. However, it is useful to know the circumstances that permit local

populations to have similar asymptotic behaviours. For this reason, we introduce the term

“symmetric equilibrium” which describes an equilibrium with coordinates satisfying the

following conditions:

ðsymÞ p ¼ p1 ¼ p2 and m1x1 ¼ m2x2:

In studying symmetric equilibria, certain relationships between fitnesses at equilibrium

and migration rates are important:

(a) f Aðp1; x1Þ ¼ f aðp1; x1Þ ¼ gAðp2; x2Þ ¼ gaðp2; x2Þ ¼ 1;

(b) m1 þ m2 ¼ 1 and

(c) f Aðp1; x1Þ ¼ f aðp1; x1Þ and gAðp2; x2Þ ¼ gaðp2; x2Þ:

The following result illustrates the various implications of these conditions.

Theorem 1 Let E ¼ ð �p1; �p2; �x1; �x2Þ be an equilibrium in the interior of R. If E satisfies

(sym) then E satisfies either (a) or (b). Conversely, if E satisfies either (a) or (b) then E

satisfies (sym). If E satisfies (c) then �p1 ¼ �p2:

Proof Assume that E satisfies (sym). Substitute m1 �x1 for m2 �x2 in the first equation of (3.1)

and cancel x1 to obtain

1 ¼ ð1 2 m1Þ f ð�p; �x1Þ þ m1gð�p; �x2Þ; ð4:1Þ

Substitute m2 �x2 for m1 �x1 in the second equation of (3.1) and cancel x2 to obtain

1 ¼ ð1 2 m2Þgð�p; �x2Þ þ m2 f ð�p; �x1Þ; ð4:2Þ

Subtracting equation (4.2) from equation (4.1) gives

0 ¼ ð1 2 m1 2 m2Þ½ f ð�p; �x1Þ2 gð�p; �x2Þ�;

from which we conclude that either m1 þ m2 ¼ 1 or that f ð�p; �x1Þ ¼ gð�p; �x2Þ ¼ 1 using

equation (3.2). A similar argument starting with the third and fourth equations of (3.1) shows
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that either m1 þ m2 ¼ 1 or that f Að�p; �x1Þ ¼ gAð�p; �x2Þ ¼ 1: Finally the definitions of f and g in

terms of fA, fa, gA and ga imply that E satisfies either (a) or (b).

Assuming that E satisfies (a), from the definition of mean fitness we conclude that

f ð �p1; �x1Þ ¼ 1 and gð �p2; �x2Þ ¼ 1: Then the first or second equation of (3.1) gives m1 �x1 ¼ m2 �x2:

And the third or fourth equation of (3.1) gives �p1 ¼ �p2:

Given that E statifies (b), we use the first two equations in (3.1) to conclude that m1 �x1 ¼

m2 �x2 and the third and fourth equations to see that �p1 ¼ �p2: For instance, substitute m2 for

1 2 m2 in the first equation and m1 for 1 2 m2 in the second equation. Then, in both

the equations, isolate the term x1 f ð �p1; �x1Þ þ x2gð �p2; �x2Þ to obtain

�x1

m2

¼ x1 f ð �p1; �x1Þ þ x2gð �p2; �x2Þ ¼
�x2

m1

This gives m1 �x1 ¼ m2 �x2:

If E satisfies (c) then observe that f A ¼ f a ¼ f and gA ¼ ga ¼ g at E. Multiply the first

equation in (3.1) by �p1 and subtract the third equation to conclude that �p1 ¼ �p2: A

Our definition of symmetric equilibrium asserts that within each patch the allele

frequencies are the same and the population sizes are proportional via the migration rates.

In light of (a) where both mean fitnesses equal 1, this proportionality gives that the total

number of migrants between patches are equal at equilibrium. The only other possibility is a

rather stringent restriction on the migration parameters, i.e. m1 þ m2 ¼ 1: In addition, the

relation that m1 �x1 ¼ m2 �x2 has useful algebraic consequences which we explore below.

Condition (c) is weaker than (a) and permits an equilibrium where the mean fitnesses of the

local populations are not equal (see the example in section 4.3). Moreover, condition (c)

implies genetic similarity but not necessarily demographic similarity.

Inequality relationships between genotype fitnesses may be obtained at an equilibrium

E ¼ ð�p; �p; �x1; �x2Þ: For E satisfying (c), we rewrite the equation f A ¼ f a in terms of genotype

fitnesses to obtain

�pð f AAð�p; �x1Þ2 f Aað�p; �x1ÞÞ þ ð1 2 �pÞð f Aað�p; �x1Þ2 f aað�p; �x1ÞÞ ¼ 0 for 0 , �p , 1; ð4:3Þ

which implies that heterozygote fitness is either superior, inferior or equal to that of the

homozygotes. The definition of mean fitness in terms of allele fitnesses gives f A ¼ f a ¼ f at

E, so f ð�p; �x1Þ ¼ �pf AAð�p; �x1Þ þ ð1 2 �pÞf Aað�p; �x1Þ2 �pf Aað�p; �x1Þ þ ð1 2 �pÞ f aað�p; �x1Þ may be

rewritten as

0 ¼ �pð f AAð�p; �x1Þ2 f ð�p; �x1ÞÞ þ ð1 2 �pÞð f Aað�p; �x1Þ2 f ð�p; �x1ÞÞ

0 ¼ �pð f Aað�p; �x1Þ2 f ð�p; �x1ÞÞ þ ð1 2 �pÞð f aað�p; �x1Þ2 f ð�p; �x1ÞÞ:
ð4:4Þ

From equation (4.4) we conclude that f ð�p; �x1Þ lies between, or is equal to, the fitnesses

for the heterozygote and the homozygotes. Hence, one of the following three conditions

holds at E:

(1) f Aað�p; �x1Þ . f ð�p; �x1Þ . f AAð�p; �x1Þ; f aað�p; �x1Þ; (heterozygote superiority);

(2) f Aað�p; �x1Þ , f ð�p; �x1Þ , f AAð�p; �x1Þ; f aað�p; �x1Þ; (heterozygote inferiority); or

(3) f Aað�p; �x1Þ ¼ f AAð�p; �x1Þ ¼ f aað�p; �x1Þ ¼ f ð�p; �x1Þ; (neutrality).

Because gAð�p; �x2Þ ¼ gað�p; �x2Þ; the analogous inequalities hold for the genotype fitnesses of

the population with size x2. Such conditions are reminiscent of the behaviour at an
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equilibrium of the classical model of density-dependent selection in a single population

without migration, e.g. see Roughgarden [6] or Selgrade and Namkoong [7]. However, at a

symmetric equilibrium in this metapopulation model, one local population may exhibit

heterozygote superiority and the other local population, heterozygote inferiority.

Using the equations f Að�p; �x1Þ ¼ f ð�p; �x1Þ and f að�p; �x1Þ ¼ f ð�p; �x1Þ which follow from (c),

we solve for �p in terms of genotype fitnesses and equate results to get

p ¼
f ð�p; �x1Þ2 f Aað�p; �x1Þ

f AAð�p; �x1Þ2 f Aað�p; �x1Þ
¼

f ð�p; �x1Þ2 f aað�p; �x1Þ

f Aað�p; �x1Þ2 f aað�p; �x1Þ
: ð4:5Þ

From the right equation in (4.5), we obtain

f ð�p; �x1Þ ¼
f Aað�p; �x1Þ

2 2 f AAð�p; �x1Þ f aað�p; �x1Þ

2f Aað�p; �x1Þ2 f AAð�p; �x1Þ2 f aað�p; �x1Þ
ð4:6Þ

We multiply equation (4.6) by 2 and show that the resulting right side is larger than f Aað �x1Þ

in the case of heterozygote superiority. With this and (i), we obtain upper and lower bounds

for the heterozygote at E, i.e. f , f Aa , 2f : For heterozygote inferiority, from (ii) we have

0 , f Aa , f : The analogous inequalities hold for the fitnesses of the x2 population. This

discussion establishes the following result:

Theorem 2 Let E ¼ ð�p; �p; �x1; �x2Þ be an equilibrium in the interior of R and assume that E

satisfies (c). Then at equilibrium, the x1 population has genotype fitnesses that exhibit either

heterozygote superiority (i) with f ð�p; �x1Þ , f Aað�p; �x1Þ , 2f ð�p; �x1Þ; or heterozygote inferiority

(ii) with 0 , f Aað�p; �x1Þ , f ð�p; �x1Þ or neutrality (iii) with f Aað�p; �x1Þ ¼ f ð�p; �x1Þ: Also, the x2

population exhibits either heterozygote superiority with gð�p; �x2Þ , gAað�p; �x2Þ , 2gð�p; �x2Þ; or

heterozygote inferiority with 0 , gAað�p; �x2Þ , gð�p; �x1Þ or neutrality with gAað�p; �x2Þ ¼

gð�p; �x2Þ:

4.1 Stability analysis

Henceforth, we assume that all genotype fitnesses depend only on population size and not on

allele frequency. This is commonly referred to as density-dependent selection and it follows

that ›f ij=›p1 ¼ 0 ¼ ›gij=›p2 for all i; j ¼ A; a: At an interior equilibrium E ¼ ð�p; �p; �x1; �x2Þ

satisfying (c), let the Jacobian matrix of the right side of equation (2.2) be represented by

DðEÞ ¼
B1 B2

B3 B4:

" #
: ð4:7Þ

where each Bi is a 2 £ 2 submatrix. A computation shows that each entry in B3 contains either

the factor ›f=›p1 or the factor ›g=›p2 and

›f

›p1

¼ 2ð f A 2 f aÞ and
›g

›p2

¼ 2ðgA 2 gaÞ: ð4:8Þ

Hence, because of condition (c), the partial derivatives in equation (4.8) are zero at

equilibrium so all entries of B3 are zero. Thus the stability of E is determined by the

eigenvalues of B1 and B4. According to the Jury conditions [10], a 2 £ 2 matrix B has
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eigenvalues inside the unit circle if and only if

jtrBj , 1 þ detB , 2: ð4:9Þ

For D(E) we have

B1 ¼

ð1 2 m1Þ f A þ �p ›f A
›p1

2 ›f
›p1

� �h i
m2 �x2 gA þ �p ›gA

›p2
2 ›g

›p2

� �h i.
�x1

m1 �x1 f A þ �p ›f A
›p1

2 ›f
›p1

� �h i.
�x2 ð1 2 m2Þ gA þ �p ›gA

›p2
2 ›g

›p2

� �h i
2
664

3
775 ð4:10Þ

and

B4 ¼

ð1 2 m1Þ f þ �x1
›f
›x1

h i
m2 gþ �x2

›g
›x2

h i
m1 f þ �x1

›f
›x1

h i
ð1 2 m2Þ gþ �x2

›g
›x2

h i
2
664

3
775: ð4:11Þ

Note that B1 contains primarily genetic information about allele frequency and genotype

fitnesses and B4 contains primarily demographic information.

Using equation (4.5) and the analogous equation for the fitnesses of the x2 population,

we write the matrix B1 in terms of the mean and heterozygote fitnesses as

B1 ¼
ð1 2 m1Þð2f 2 f AaÞ m2 �x2ð2g2 gAaÞ= �x1

m1 �x1ð2f 2 f AaÞ= �x2 ð1 2 m2Þð2g2 gAaÞ

" #
ð4:12Þ

and determine that the determinant and trace of B1 are given by

detB1 ¼ ð2f 2 f AaÞð2g2 gAaÞð1 2 m1 2 m2Þ

trB1 ¼ ð1 2 m1Þð2f 2 f AaÞ þ ð1 2 m2Þð2g2 gAaÞ:
ð4:13Þ

From Theorem 2, we know that heterozygote fitnesses are less than two times the mean

fitnesses. Thus B1 is a positive matrix and so the spectral radius is the eigenvalue of largest

norm (Perron’s Theorem [11]). Generally it is difficult to determine if this eigenvalue is less

than one. However, if (a) holds then the mean and allele fitnesses equal 1 and computations

show that the inequality trB1 , 1 þ detB1 is equivalent to either of the following

inequalities:

0 , ð f Aa 2 1ÞðgAa 2 1Þ þ m1ðgAa 2 1Þð2 2 f AaÞ þ m2ð f Aa 2 1Þð2 2 gAaÞ ð4:14aÞ

or

m1ð1 2 gAaÞ þ m2ð1 2 f AaÞ , ð1 2 m1 2 m2Þð1 2 gAaÞð1 2 f AaÞ: ð4:14bÞ

When both populations exhibit heterozygote superiority at equilibrium then each term on

the right in inequality (4.14a) is positive so trB1 , 1 þ detB1: Moreover, since 21 #

1 2 m1 2 m2 # 1; we have detB1 , 1: Thus the Jury conditions are satisfied and both

eigenvalues of B1 are inside the unit circle. If both populations exhibit fitness neutrality at

equilibrium then the right side of inequality (4.14a) is zero. Hence, trB1 ¼ 1 þ detB1 and

writing this equation in terms of the eigenvalues of B1 implies that at least one eigenvalue is

equal to 1. Thus, an equilibrium with neutral fitnesses is degenerate. Finally, assume that

both populations exhibit heterozygote inferiority at equilibrium. If m1 þ m2 $ 1 then the left

side of inequality (4.14b) is positive and the right side is not. So trB1 . 1 þ detB1 and this
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equilibrium is unstable. If m1 þ m2 , 1 and inequality (4.14b) is satisfied, a tedious

computation shows that trB1 . 2: We conclude that this type of equilibrium is unstable.

For the matrix B4, from equation (4.11) it follows that

detB4 ¼ ð1 2 m1 2 m2Þ f þ �x1

›f

›x1

� �
gþ �x2

›g

›x2

� �

trB4 ¼ ð1 2 m1Þ f þ �x1

›f

›x1

� �
þ ð1 2 m2Þ gþ �x2

›g

›x2

� �
:

ð4:15Þ

Unlike B1, the eigenvalues of B4 may be complex because the discriminant, ðtrB4Þ
2 2

4detB4; may be negative. The next result contains necessary conditions for complex

eigenvalues.

Proposition 1 Assume that the interior equilibrium E satisfies (c). If the eigenvalues of B4

are complex then

1 , m1 þ m2 and f þ �x1

›f

›x1

� �
gþ �x2

›g

›x2

� �
, 0:

Proof From equation (4.15) write out the discriminant and not that

1 2 m1 2 m2 ¼ ð1 2 m1Þð1 2 m2Þ2 m1m2:

Rewrite the discriminant in the form

ð1 2 m1Þ f þ �x1

›f

›x1

� �
2 ð1 2 m2Þ gþ �x2

›g

›x2

� �� �2

þ 4m1m2 f þ �x1

›f

›x1

� �
gþ �x2

›g

›x2

� �
:

Observe that since the discriminant must be negative, we need

f þ �x1

›f

›x1

� �
gþ �x2

›g

›x2

� �
, 0:

And since detB4 . 0 then equation (4.15) implies that 1 2 m1 2 m2 , 0: A

The Jury conditions may be used to obtain necessary and sufficient conditions for stable

eigenvalues for B4 but no general conclusions follow from the complicated formulas that result.

4.2 Example with heterozygote superiority and heterozygote inferiority

Here we present a family of examples where the genotypes of the x1 population exhibit

heterozygote superiority and the genotypes of the x2 population exhibit heterozygote

inferiority but the 4-dimensional metapopulation may exhibit stability, instability or

bistability. For the x1 population, assume that f AaðxÞ . f AAðxÞ ¼ f aaðxÞ for all x . 0: Thus

the x1 population has heterozygote superiority and homozygote equality. For the x2

population, reverse the definitions of the fitnesses by letting gAAðxÞ ¼ gaaðxÞ ¼ f AaðxÞ and

gAaðxÞ ¼ f AAðxÞ: Hence the x2 population has heterozygote inferiority and homozygote
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equality. To guarantee that equilibria exist, assume that f ijð0Þ . 1 and f ijðxÞ decreases to zero

ð f 0ijðxÞ , 0Þ as x!1; for i; j ¼ A; a: This is a standard crowding assumption used for many

per capita transition functions. Let �x be the unique solution to

1 ¼ ð f AAðxÞ þ f AaðxÞÞ=2: ð4:16Þ

For i ¼ 1; 2; if both mi ¼ 0 then equilibria occur at ðpi; xiÞ ¼ ð0:5; �xÞ in the interior of the

ðpi; xiÞ-planes. Referring again to Roughgarden [6] or Selgrade and Namkoong [7], it can be

seen that one eigenvalue of the equilibrium ð0:5; �xÞ is

l ¼ 1 þ �xð f 0AAð�xÞ þ f 0Aað�xÞÞ=2: ð4:17Þ

This eigenvalue is in the stable range if we assume

24 , �xð f 0AAð�xÞ þ f 0Aað�xÞÞ: ð4:18Þ

The inequality (4.18) asserts that fitnessess do not decrease too rapidly at equilibrium and

has been a standard assumption since Roughgarden [12] in 1976. Because of heterozygote

superiority and inequality (4.18), the equilibrium ðp1; x1Þ ¼ ð0:5; �xÞ is locally asymptotically

stable in the ðp1; x1Þ-plane. With heterozygote inferiority and inequality (4.18), ðp2; x2Þ ¼

ð0:5; �xÞ is a saddle point in the ðp2; x2Þ-plane.

For the metapopulation model with mi – 0; the portion of the plane in R given by

P ¼ {ðp1; p2; x1; x2Þ [ R : p1 ¼ p2 ¼ 0:5} is invariant because on this plane f ¼ f A ¼ g ¼

gA ¼ ð f AA þ f AaÞ=2: On P, equation (2.2) reduces to the 2-dimensional metapopulation

system

x01 ¼ ð1 2 m1Þx1ð f AAðx1Þ þ f Aaðx1ÞÞ=2 þ m2x2ð f AAðx2Þ þ f Aaðx2ÞÞ=2;

x02 ¼ ð1 2 m2Þx2ð f AAðx2Þ þ f Aaðx2ÞÞ=2 þ m1x1ð f AAðx1Þ þ f Aaðx1ÞÞ=2:
ð4:19Þ

The origin (0,0) in P is always an unstable equilibrium of equation (4.19) because the

derivative of equation (4.19) at (0,0) is a positive matrix with dominant eigenvalue ð f AAð0Þ þ

f Aað0ÞÞ=2 . 1: If m ¼ m1 ¼ m2 – 0 then there is a symmetric equilibrium Em in the interior

of P where p1 ¼ p2 ¼ 0:5 and x1 ¼ x2 ¼ �x: The coordinates of Em are independent of m but

its stability as an equilibrium of equation (2.2) depends on m. The eigenvalues of Em with

respect to P are given by l of equation (4.17) and ð1 2 2mÞl: Thus Em is a locally stable

equilibrium of equation (4.19) if equation (4.18) is satisfied. Note that when m1 ¼ m2 (which

we will assume for the remainder of this example), the line {ðp1; p2; x1; x2Þ [ R : p1 ¼

p2 ¼ 0:5; x1 ¼ x2} is invariant and contains the unstable manifold of (0,0) in P. However, the

map of equation (4.19) is not monotone so its dynamical behaviour can be quite general.

To determine the stability of Em in the 4-dimensional space R, we study the matrices B1

and B4 in equation (4.7). From equation (4.13) we conclude that trB1 ¼ 2ð1 2 mÞ and

detB1 ¼ ð1 2 2mÞ f AAð�xÞ f Aað�xÞ using the fact that f AAð�xÞ þ f Aað�xÞ ¼ 2 (see equation (4.16)).

The inequality trB1 , 1 þ detB1 , 2 is equivalent to

0 , ð2m2 1Þð1 2 f AAð�xÞ f Aað�xÞÞ , 2m: ð4:20Þ

For equation (4.20) to be satisfied there are two cases to be considered. If

1 2 f AAð�xÞ f Aað�xÞ . 0 then the left inequality in equation (4.20) is satisfied if and only if

m . 0:5: Observing that

0 , 1 2 f AAð�xÞ f Aað�xÞ ¼ 1 2 ð2 2 f Aað�xÞÞ f Aað�xÞ , 1;
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we conclude that

ð2m2 1Þð1 2 f AAð�xÞ f Aað�xÞÞ , 2m2 1 , 2m:

If 1 2 f AAð�xÞ f Aað�xÞ , 0 then the left inequality in (4.20) is satisfied if and only if m , 0:5:

The right inequality in (4.20) is equivalent to

f AAð�xÞ f Aað�xÞ2 1 , 2mf AAð�xÞ f Aað�xÞ:

Hence, inequality in (4.20) is satisfied if and only if m satisfies the following inequality:

f AAð�xÞ f Aað�xÞ2 1

2f AAð�xÞ f Aað�xÞ
, m ,

1

2
: ð4:21Þ

If m ¼ 0:5 then detB1 ¼ 0 and trB1 ¼ 1 so the eigenvalues of B1 are 0 and 1.

From equation (4.11), we compute

detB4 ¼ ð1 2 2mÞ 1 þ �xð f 0AAð�xÞ þ f 0Aað�xÞÞ=2
� �2

; ð4:22aÞ

and

trB4 ¼ ð1 2 mÞ 2 þ �xð f 0AAð�xÞ þ f 0Aað�xÞÞ
� �

: ð4:22bÞ

Inequality (4.18) implies that detB4 , 1: To guarantee that jtrB4j , 1 we assume the

following inequality which is similar to Inequality (4.18) but slightly stronger:

21 , 2 þ �xð f 0AAð�xÞ þ f 0Aað�xÞÞ , 1: ð4:23Þ

With inequality (4.23), the eigenvalues of B4 are inside the unit circle for all m , 1: The

stability properties of Em are summarized in the following result.

Theorem 3 Suppose that the genotype fitnesses satisfy f Aa ¼ gAA ¼ gaa . f AA ¼ f aa ¼

gAa for all x . 0: Assume that f ijð0Þ . 1 and f ijðxÞ d 0 as x!1; that m ¼ m1 ¼ m2 and

that inequality (4.23) holds. Then the eigenvalues of the equilibrium Em ¼ ð0:5; 0:5; �x; �xÞ are

inside the unit circle if and only if

(1) 1 2 f AAð�xÞ f Aað�xÞ . 0 and m . 0:5 or

(2) 1 2 f AAð�xÞ f Aað�xÞ , 0 and

f AAð�xÞ f Aað�xÞ2 1

2f AAð�xÞ f Aað�xÞ
, m , 0:5:

If m ¼ 0:5 then there is a line segment of degenerate (eigenvalue 1), symmetric equilibria

given by L ¼ {ðp1; p2; �x; �xÞ [ R : p1 ¼ p2}:

For both cases (i) and (ii), Em loses stability at m ¼ 0:5 as Em passes through a line

segment of degenerate equilibria. Such bifurcations from lines of degenerate equilibria have

been observed in other models from population genetics, e.g. see Munoz and Selgrade [13] or

Selgrade [14]. One way in which this bifurcation occurs may be seen in the following specific

example satisfying the hypotheses of Theorem 3.
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Take the genotype fitnesses to be decreasing exponential functions of the form:

f AAðx1Þ ¼ f aaðx1Þ ¼ e12x1 ; f AaðxÞ ¼ e120:5x1 ;

gAAðx2Þ ¼ gaaðx2Þ ¼ e120:5x2 ; gAaðx2Þ ¼ e12x2 :
ð4:24Þ

With the fitnesses of equation (4.24), �x < 1:4151 is the unique solution to equation (4.16)

so Em < ð0:5; 0:5; 1:4151; 1:4151Þ: Compute that

2 þ �xð f 0AAð�xÞ þ f 0Aað�xÞÞ < 0:11774

so inequality (4.23) holds. Note that 1 2 f AAð�xÞ f Aað�xÞ ¼ 1 2 e221:5�x < 0:1154; hence case

(i) of Theorem 3 applies. Thus Em is locally asymptotically stable if m . 0:5 and unstable if

m , 0:5:

In fact, from numerical studies, Em ¼ ð0:5; 0:5; �x; �xÞ appears to be globally asymptotically

stable if m . 0:5: Em loses stability as m decreases through 0.5 because one eigenvalue of B1

increases through 1. Thus, for larger migration rates ðm . 0:5Þ; each local population

asymptotically approaches the same density value �x and the same allele frequency p1 ¼

p2 ¼ 0:5; where both alleles are present in equal numbers. So the local populations are

behaving alike, both demographically and genetically. For two-population metapopulation

models without genetic variation, Hanski [3], Gyllenberg et al. [15] and others have observed

that complex dynamical behaviour for the local populations may become somewhat stable

and synchronous as migration rates increase.

For m , 0:5 our example exhibits bistable behaviour. For instance, if m ¼ 0:45 then there

are three interior equilibria—one unstable symmetric equilibrium Em <
ð0:5; 0:5; 1:4151; 1:4151Þ and two stable nonsymmetric equilibria (figure 1)

EA < ð0:95013; 0:95622; 1:3916; 1:4718Þ and

Ea < ð0:04988; 0:04378; 1:3916; 1:4718Þ:

Em has a 3-dimensional stable manifold (the plane P is a subset of this stable manifold)

which separates the domains of attraction of EA and Ea. Asymptotically, each local

population behaves similarly, but that behaviour depends on initial conditions. Specifically,

each population approaches an equilibrium where population sizes are close to one another

and the A allele frequencies are large at EA or the a allele frequencies are large at Ea. Notice

that the population sizes at EA and Ea are identical but the allele frequencies are very

different. Thus, the bistable behaviour reveals genetic but not demographic differences.

Although decreasing m through 0.5 results in the stable equilibrium Em being replaced by

the three equilibria Em, EA and Ea, this bifurcation at m ¼ 0:5 is not a pitchfork bifurcation

because EA and Ea are never close to Em. At m ¼ 0:5; the line segment of degenerate

equilibria L extends from the point ð0; 0; �x; �xÞ to the point ð1; 1; �x; �xÞ in the plane

{ðp1; p2; x1; x2Þ [ R : x1 ¼ x2 ¼ �x}: As m decreases below 0.5, the equilibria of L
disappears and are replaced by Em at the midpoint of L and EA and Ea near the ends of L.

For m , 0:5; solutions to equation (2.2) rapidly collapse to the line segment L and then move

along L toward EA and Ea as depicted in figure 1(a). Thus population sizes x1 and x2 rapidly

converge to equilibrium values but allele frequencies converge on a slower time scale

(see figure 1(b)).
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4.3 Example satisfying condition (b), i.e. m1 1m2 5 1

Here we consider another example with fitnesses given by equation (4.24) but assume that

m1 – m2: This example illustrates how migration which is larger into the patch exhibiting

heterozygote superiority (stability) than out of that patch results in a stable metapopulation.

We seek symmetric equilibria with p1 ¼ p2 ¼ 0:5: Because of the form of the fitnesses in

equation (4.24), if p1 ¼ p2 ¼ 0:5 then f A ¼ f a ¼ f and gA ¼ ga ¼ g although these fitnesses

may not be equal to 1 at equilibrium. Hence (b) holds, i.e. m1 þ m2 ¼ 1: To find the

xi-coordinates of an equilibrium consider the decreasing function hðxÞ ¼ e12x þ e120:5x

defined in terms of genotype fitnesses equation (4.24). Impose the condition m1x1 ¼ m2x2

and observe that solving equation (3.1) for x1 is equivalent to finding the unique positive

solution �x1 to

2 ¼ m2hðx1Þ þ m1hðm1x1=m2Þ; ð4:25Þ

which exists since hð0Þ . 2 and h(x) decreases to 0 as x increases. With �x2 ¼ m1 �x1=m2;

equation (3.1) is satisfied because m1 þ m2 ¼ 1: Hence, we may assert the existence of a

symmetric equilibrium in the interior of R which depends on m2 with the following result:

Proposition 2 Suppose genotype fitnesses are given by equation (4.24) and assume

condition (b), i.e. that m1 þ m2 ¼ 1: Then equation (2.2) has a symmetric equilibrium

Em2
¼ ð0:5; 0:5; �x1; �x2Þ satisfying (sym) where �x1 is the unique positive solution to

equation (4.25).

Figure 1. Solutions to equation (2.2) for fitnesses equation (4.24) with m ¼ 0:45 are projected into ðp1; p2Þ-plane
and ðp1; x1Þ-plane illustrating slow evolution of allele frequency toward stable equilibria EA and Ea. Arrows indicate
direction of iteration. In (b) the line {p1 ¼ 0:5} represents the projection of the stable manifold of Em.
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To determine the stability of Em2
we analyse the matrix DðEm2

Þ in equation (4.7). Since

f A ¼ f a and gA ¼ ga at Em2
; equation (4.8) implies B3 is zero. At Em2

we see that

B1 ¼
ð1 2 m1Þ f AAð �x1Þ m1f Aað �x2Þ

m2f AAð �x1Þ ð1 2 m2Þ f Aað �x2Þ

" #
ð4:26Þ

and

B4 ¼
ð1 2 m1Þ½hð �x1Þ þ x1h

0ð �x1Þ�=2 m2½hð �x2Þ þ x2h
0ð �x2Þ�=2

m1½hð �x1Þ þ x1h
0ð �x1Þ�=2 ð1 2 m2Þ½hð �x2Þ þ x2h

0ð �x2Þ�=2

" #
: ð4:27Þ

Note that detB1 ¼ detB4 ¼ 0; so Em2
has two zero eigenvalues. The other two eigenvalues

are trB1 and trB4 given by

trB1 ¼ m2 f AAð �x1Þ þ m1 f Aað �x2Þ;

trB4 ¼ 1 þ 0:5½m2x1h
0ð �x1Þ þ m1x2h

0ð �x2Þ�:
ð4:28Þ

For parameter values of interest here trB4 is always in the stable range but trB1 may be in

the stable or unstable range. In fact, numerical examples indicate that Em2
is globally stable if

m2 . 0:5 . m1 and unstable if m2 , 0:5 , m1: When m2 . m1; there is more migration

into the stable ðp1; x1Þ-patch where the local population exhibits stability than out of that

patch and this migration pattern results in a stable metapopulation. If m1 . m2 then the

interior equilibrium is unstable and there are two stable boundary equilibria, one in each

fixation plane (see figure 3). Em2
loses stability when m2 ¼ m1 ¼ 0:5 where trB1 ¼ 1: This

parameter set was discussed in section 4.2 since Em2
¼ ð0:5; 0:5; 1:4151; 1:4151Þ is on

the line of degenerate equilibria for m ¼ m2 ¼ m1 ¼ 0:5:

For m2 . 0:5 . m1; we show that Em2
is stable by showing that as m2 increases

through 0.5 then the trB1 decreases through 1. This is done by differentiating the function

for trB1 in equation (4.28) with respect to m2 at m2 ¼ 0:5 remembering that m1 ¼

1 2 m2; �x2 ¼ m1 �x1=m2; and �x1 varies with m2: The dependence of �x1 on m2 may be

determined by differentiating equation (4.25) implicitly to obtain at m2 ¼ 0:5

dx1

dm2

¼ 2 �x1 < 2:83: ð4:29Þ

Figure 2 depicts the curve of points satisfying equation (4.25) near ðm2; x2Þ ¼

ð0:5; 1:4151Þ; which clearly has a slope of approximately 3 at m2 ¼ 0:5:

A tedious computation using equation (4.29) shows that the derivative of trB1 in equation

(4.28) with respect to m2 at m2 ¼ 0:5 and �x1 ¼ 1:4151 is approximately 20.6659. So an

increase in m2 of 0.05 should result in a decrease of approximately 0.0333 in trB1. This

decrease is consistent with numerical simulations. For example, if m2 ¼ 0:55 and m1 ¼ 0:45

the symmetric equilibrium Em2
¼ ð0:5; 0:5; 1:5492; 1:2676Þ is stable and its largest

eigenvalue is trB1 < 0:9666: If m2 ¼ 0:45 and m1 ¼ 0:55 the symmetric equilibrium Em2
¼

ð0:5; 0:5; 1:2676; 1:5492Þ is unstable and its largest eigenvalue is trB1 < 1:0334: In this case,

solutions are asymptotic to two stable boundary equilibria, E1 ¼ ð1; 1; 1:312; 1:6035Þ and

E0 ¼ ð0; 0; 1:312; 1:6035Þ; see figure 3.
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5. Attracting invariant curves with large migration

As observed for the example in section 4.2, a large migration rate may result in a globally stable

equilibrium. However, according to Proposition 1, large migration rates ðm1 þ m2 . 1Þ

are necessary for an equilibrium satisfying (c) to have complex eigenvalues. A common way to

obtain an attracting invariant curve in this situation is through a Naimark-Sacker bifurcation

[4, 5]. With this bifurcation an equilibrium becomes unstable because its complex eigenvalues

move outside the unit circle as a parameter is varied.

Figure 3. Solutions are projected into 2-dimensional (p1,x1)-space for fitnesses (4.24), m1 ¼ 0:55 and m2 ¼ 0:45:
Equilibria E0 and E1 are stable and Em2

is unstable.

Figure 2. Curve satisfying equation (4.25) near ðm2; x1Þ ¼ ð0:5; 1:4151Þ:
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We present an example where the fitnesses for the x1 population exhibit heterozygote

superiority and the fitnesses for the x2 population exhibit neutrality. Then we show that a

Naimark-Sacker bifurcation occurs as the migration rate m2 increases. Take the genotype

fitnesses to be decreasing exponential functions of the form (see figure 4):

f AAðx1Þ ¼ f aaðx1Þ ¼ e220:5x1 ; f AaðxÞ ¼ e220:15x1 and

gAAðx2Þ ¼ gaaðx2Þ ¼ gAaðx2Þ ¼ e120:9x2 :
ð5:1Þ

Since all genotype fitnesses for the x2 population are the same, the x2 population has no

genetic variation, i.e. gðx2Þ ¼ gijðx2Þ for all i, j ¼ A; a. Clearly,

f AaðxÞ . f iiðxÞ . gðxÞ for all x . 0:

Since gA ¼ ga and f Að0:5; x1Þ ¼ f að0:5; x1Þ; condition (c) is satisfied at an equilibrium

where �p1 ¼ 0:5: The fact that fAa is large and slowly decreasing (see figure 4) in comparison

with the other fitnesses, which suggests that it might be possible to have an equilibrium with

a negative fitness product corresponding to the condition given in Proposition 1 because

f þ �x1

›f

›x1

� �
. 0 . gþ �x2

›g

›x2

� �
: ð5:2Þ

Numerical experiments indicate that equation (2.2) with fitnesses given by equation (5.1)

has a family of asymptotically stable, nonsymmetric equilibria Em2
¼ ð0:5; 0:5; �x1; �x2Þ for

m1 ¼ 0:93 and m2 , 0:9: Because f AA ¼ f aa and �p ¼ 0:5; (c) is satisfied and the derivatives

in equation (4.8) are zero. Hence, the submatirx B3 in DðEm2
Þ is zero and the eigenvalues of

Em2
are those of B1 and B4. Fixing m1 ¼ 0:93 and using equation (4.12), we find that

B1 ¼
0:07f AAð �x1Þ m2x2gð �x2Þ= �x1

0:93x1f AAð �x1Þ= �x2 ð1 2 m2Þgð �x2Þ

" #
; ð5:3Þ

which has real eigenvalues inside the unit circle for m2 near 0.9. The eigenvalues of B4

are complex and move from inside to outside the unit circle as m2 increases through 0.901.

Figure 4. Genotype fitnesses equation (5.1).
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The values for �x1; �x2 and m2 at bifurcation are found by solving simultaneously the equation

detB4 ¼ 1

along with the first two equations of equation (3.1). The values obtained are �x1 < 0:6209;

�x2 < 3:5468 and m2 < 0:901: The eigenvalues of the equilibrium E0:901 ¼

ð0:5; 0:5; 0:6209; 3:5468Þ are 20.5403, 0.9305 and 0:1601 ^ 0:9870i: A Naimark-Sacker

bifurcation occurs at m2 < 0:901 resulting in a locally stable invariant curve. Since f ¼ f A
and g ¼ gA; the plane P ¼ {ðp1; p2; x1; x2Þ [ R : p1 ¼ p2 ¼ 0:5} is invariant and B4 is the

derivative matrix for equation (2.2) restricted to P. Hence, the Naimark-Sacker bifurcation

occurs for equation (2.2) restricted to P and Pscr; contains the attracting invariant curve. On

this attractor the population sizes vary but the allele frequencies remain fixed at 0.5. For

values of m2 . 0:901; numerical results show that the metapopulation model has a globally

asymptotically stable invariant curve as depicted in figure 5 when m2 ¼ 0:93 ¼ m1:

6. Conclusion and future directions

Here we study a 4-dimensional system of nonlinear difference equations (2.2) which models

a two-patch metapopulation under the influence of density-dependent selection. To

determine conditions, which result in similar behaviour in the local populations, we

introduce the concept of symmetric equilibrium. The stability of a symmetric equilibrium is

analyzed by considering two 2 £ 2 matrices, one containing primarily genetic information

and the other containing primarily demographic information. The genetic matrix is positive

so it has only real eigenvalues but, in contrast, the demographic matrix may have complex

eigenvalues.

Figure 5. Two views of the attracting invariant curve are given for fitnesses (5.1) and m1 ¼ m2 ¼ 0:93: (a) shows
attraction to the curve within the invariant plane P and (b) shows attraction to P.
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In section 4.2, we present a family of examples where the genotypes of one local

population exhibit heterozygote superiority in fitness (stability) and the genotypes of the

other local population exhibit heterozygote inferiority (instability) but the 4-dimensional

metapopulation can exhibit stability, instability or bistability. The bifurcation we observe

from stable equilibrium to two stable equilibria is not a pitchfork bifurcation. At

bifurcation, there is a line segment of degenerate equilibria which is replaced by two stable

equilibria located at opposite ends of the segment and a saddle point as the migration

parameter decreases. A theoretical investigation of this bifurcation will be attempted in the

future.

The example of section 4.3 explores the effects of different migration rates on

metapopulation stability. For this example, if the immigration rate for the stable patch

exhibiting heterozygote superiority is greater than its emigration rate, then the metapopulation

has a stable equilibrium. If the reverse is true then an unstable equilibrium results. These results

demonstrate that migration patterns can critically affect metapopulation dynamics and,

through such effects, impinge on levels of genetic polymorphism and population size

outcomes. Studying the effects of different migration rates on metapopulation dynamics in a

more general setting will be the topic of future work.

In section 5, we illustrate a Naimark-Sacker bifurcation that occurs as a migration parameter

varies. This bifurcation results in a globally asymptotically stable invariant curve. Such

behaviour cannot occur in the selection model equation (2.1) without migration. Additional

studies will focus on the existence of other nonequilibrium attractors. A period-doubling

cascade resulting in a strange attractor [9] has been demonstrated for a one-patch model with

selection and immigration. Similar behaviour is expected for metapopulation models.
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